The regenerator location problem

نویسندگان

  • Si Chen
  • Ivana Ljubic
  • S. Raghavan
چکیده

In this article, we introduce the regenerator location problem (RLP), which deals with a constraint on the geographical extent of transmission in optical networks. Specifically, an optical signal can only travel a maximum distance of dmax before its quality deteriorates to the point that it must be regenerated by installing regenerators at nodes of the network. As the cost of a regenerator is high, we wish to deploy as few regenerators as possible in the network, while ensuring all nodes can communicate with each other. We show that the RLP is NP-Complete. We then devise three heuristics for the RLP. We show how to represent the RLP as a max leaf spanning tree problem (MLSTP) on a transformed graph. Using this fact, we model the RLP as a Steiner arborescence problem (SAP) with a unit degree constraint on the root node. We also devise a branchand-cut procedure to the directed cut formulation for the SAP problem. In our computational results over 740 test instances, the heuristic procedures obtained the optimal solution in 454 instances, whereas the branch-and-cut procedure obtained the optimal solution in 536 instances. These results indicate the quality of the heuristic solutions are quite good, and the branch-and-cut approach is viable for the optimal solution of problems with up to 100 nodes. Our approaches are also directly applicable to the MLSTP indicating that both the heuristics and branch-and-cut approach are viable options for the MLSTP. © 2009 Wiley Periodicals, Inc. NETWORKS, Vol. 55(3), 205–22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristics for the Regenerator Location Problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically using regenerators. These components are rel...

متن کامل

Randomized Heuristics for the Regenerator Location Problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically using regenerators. These components are rel...

متن کامل

The Generalized Regenerator Location Problem

In an optical network a signal can only travel a maximum distance of dmax before its quality deteriorates to the point that it must be regenerated by installing regenerators at nodes of the network. As the cost of a regenerator is high, we wish to deploy as few regenerators as possible in the network, while ensuring all nodes can communicate with each other. In this paper we introduce the gener...

متن کامل

Regenerator Location Problem in Flexible Optical Networks

In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, RLP-FON tries to solve the regenerator placement, routing, bandwidth allocation and modulation selection problems jointly to satisfy data transfer demands with the minimum number of regenerators. We propose a novel branch and price algorithm for this challenging probl...

متن کامل

On the Complexity of the Regenerator Location Problem - Treewidth and Other Parameters - (Extended Abstract)

We deal with the Regenerator Location Problem in optical networks. We are given a network G = (V,E), and a set Q of communication requests between pairs of terminals in V . We investigate two variations: one in which we are given a routing P of the requests in Q, and one in which we are required to find also the routing. In both cases, each path in P must contain a regenerator after every d edg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Networks

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2010